

Memory FeRAM

4 M (256 K × 16) Bit

MB85R4M2T

■ DESCRIPTIONS

The MB85R4M2T is an FeRAM (Ferroelectric Random Access Memory) chip consisting of 262,144 words × 16 bits of nonvolatile memory cells fabricated using ferroelectric process and silicon gate CMOS process technologies.

The MB85R4M2T is able to retain data without using a back-up battery, as is needed for SRAM.

The memory cells used in the MB85R4M2T can be used for 10^{13} read/write operations, which is a significant improvement over the number of read and write operations supported by Flash memory and E2PROM. The MB85R4M2T uses a pseudo-SRAM interface.

■ FEATURES

• Bit configuration : $262,144 \text{ words} \times 16 \text{ bits}$

• LB and UB data byte control : Available Configuration of 524,288 words × 8 bits

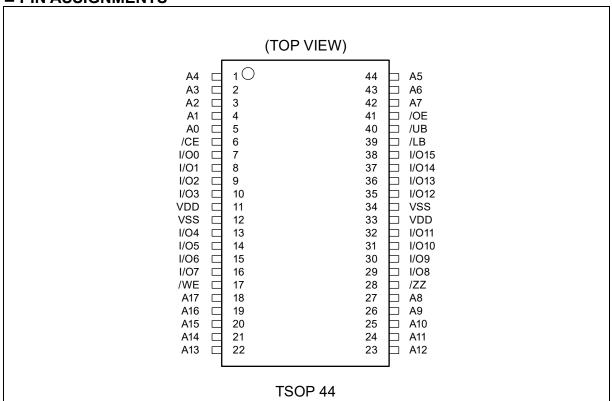
• Read/write endurance : 10¹³ times / 16 bits

• Data retention : 10 years (+ 85 °C), 95 years (+ 55 °C), over 200 years (+ 35 °C)

• Operating power supply voltage : 1.8 V to 3.6 V

• Low power operation : Operating power supply current 20 mA (Max)

Standby current 150 μA (Max) Sleep current 20 μA (Max)

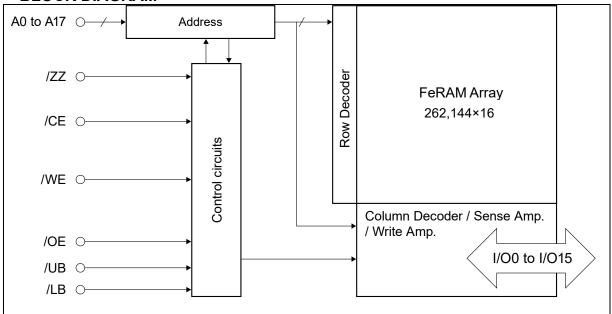

• Operation ambient temperature range : - 40 °C to + 85 °C

• Package : 44-pin plastic TSOP

RoHS compliant

Fujitsu Semiconductor Memory Solutions Limited has changed its name to RAMXEED Limited. RAMXEED Limited will continue to offer and support existing products while maintaining Fujitsu's part number unchanged.

■ PIN ASSIGNMENTS



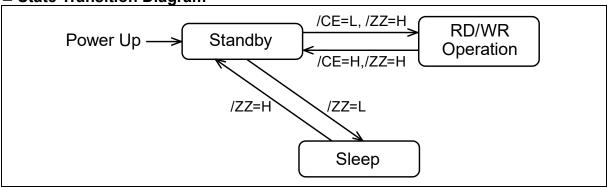
■ PIN DESCRIPTIONS

Pin Number	Pin Name	Functional Description
1 to 5, 18 to 22,	A0 to A17	Address Input pins
23 to 27, 42 to 44		Select 262,144 words in FeRAM memory array by 18 Address
		Input pins. When these address inputs are changed during /CE
		equals to "L" level, reading operation of data selected in the
		address after transition will start.
7 to 10, 13 to 16,	I/O0 to I/O15	Data Input/Output pins
29 to 32, 35 to 38		These are 16 bits bidirectional pins for reading and writing.
6	/CE	Chip Enable Input pin
		In case the /CE equals to "L" level and /ZZ equals to "H" level,
		device is activated and enables to start memory access.
		In writing operation, input data from I/O pins are latched at the
		rising edge of /CE and written to FeRAM memory array.
17	/WE	Write Enable Input pin
		Writing operation starts at the falling edge of /WE.
		Input data from I/O pins are latched at the rising edge of /WE
		and written to FeRAM memory array.
41	/OE	Output Enable Input pin
		When the /OE is "L" level, valid data are output to data bus.
		When the /OE is "H" level, all I/O pins become high impedance
		(High-Z) state.
28	/ZZ	Sleep Mode Input pin
		When the /ZZ becomes to "L" level, device transits to the Sleep
		Mode.
		During reading and writing operation, /ZZ pin shall be hold "H"
		level.
39, 40	/LB, /UB	Lower/Upper byte Control Input pins
		In case /LB or /UB equals to "L" level, it enables
		reading/writing operation of I/O0 to I/O7 or I/O8 to I/O15
		respectively. In case /LB and /UB equal to "H" level, all I/O
		pins become High-Z state.
11, 33	VDD	Supply Voltage pins
		Connect all two pins to the power supply.
12, 34	VSS	Ground pins
		Connect all two pins to ground.

Note: Please refer to the timing diagram for functional description of each pin.

■ BLOCK DIAGRAM

■ FUNCTIONAL TRUTH TABLE


Operation Mode	/CE	/WE	/OE	A0 to A17	/ZZ	
Sleep	×	×	×	×	L	
Standby	Н	×	×	×	Н	
Read		Н	L	H or L	Н	
Address Access Read	L	Н	L	↑ or ↓	Н	
Write(/CE Control)*1	→	L	×	H or L	Н	
Write(/WE Control)*1*2	L	1	×	H or L	Н	
Address Access Write*1*3	L	↓	×	↑ or ↓	Н	
Pre-charge	1	×	×	×	Н	
Note: H= "H" level, L= "L" level, \uparrow = Rising edge, \downarrow = Falling edge, \times = H, L, \downarrow or \uparrow						

^{*1:} In writing cycle, input data is latched at early rising edge of /CE or /WE.

^{*2:} In writing sequence of /WE control, there exists time with data output of reading cycle at the falling edge of /CE.

^{*3:} In writing sequence of Address Access Write, there exists time with data output of reading cycle at the address transition.

■ State Transition Diagram

■ FUNCTIONAL TRUTH TABLE OF BYTE CONTROL

Operation Mode	/WE	/OE	/LB	/UB	I/O0 to I/O7	I/O8 to I/O15
Dood (With out Output)	Н	Н	×	×	Hi-Z	Hi-Z
Read(Without Output)	Н	×	Н	Н	Hi-Z	Hi-Z
Read(I/O8 to I/O15)			Н	L	Hi-Z	Output
Read(I/O0 to I/O7)	Н	L	L	Н	Output	Hi-Z
Read(I/O0 to I/O15)			L	L	Output	Output
Write(I/O8 to I/O15)			Н	L	×	Input
Write(I/O0 to I/O7)	1 ↑	×	L	Н	Input	×
Write(I/O0 to I/O15)			L	L	Input	Input

Note: H= "H" level, L= "L" level, \uparrow = Rising edge, \downarrow = Falling edge, \times = H, L, \downarrow or \uparrow Hi-Z= High Impedance

In case the byte reading or writing are not selected, /LB and /UB pins shall be connected to GND pin. In writing, please don't switch /LB and/or /UB during /CE="L".

■ ABABSOLUTE MAXIMUM RATINGS

Parameter	Cumbal	Rat	l lmi4	
Parameter	Symbol	Min	Max	Unit
Power Supply Voltage*	V_{DD}	- 0.5	+ 4.0	V
Input Pin Voltage*	V_{IN}	- 0.5	$V_{DD} + 0.5 \ (\leq 4.0)$	V
Output Pin Voltage*	V_{OUT}	-0.5	$V_{DD} + 0.5 \ (\leq 4.0)$	V
Operation Ambient Temperature	$T_{\mathbf{A}}$	- 40	+ 85	°C
Storage Temperature	Tstg	- 55	+ 125	°C

^{* :} All voltages are referenced to VSS (ground 0 V).

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

■ RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Value				
Parameter	Symbol	Min	Тур	Max	Unit	
Power Supply Voltage*1	$V_{ m DD}$	1.8	3.3	3.6	V	
Operation Ambient Temperature*2	$T_{\mathbf{A}}$	- 40	_	+ 85	°C	

^{*1:} All voltages are referenced to VSS (ground 0 V).

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their representatives beforehand.

^{*2:} Ambient temperature when only this device is working. Please consider it to be the almost same as the package surface temperature.

■ ELECTRICAL CHARACTERISTICS

1. DC Characteristics

(within recommended operating conditions)

Doromotor	Cumbal	Condition		Value	operating cont	
Parameter	Symbol	Condition	Min	Тур	Max	Unit
Input Leakage Current	$ \mathrm{I}_{\mathrm{LI}} $	$V_{IN} = 0V$ to V_{DD}			5	μΑ
Output Leakage Current	$ { m I}_{ m LO} $	$V_{OUT} = 0V$ to V_{DD} $/CE = V_{IH}$ or $/OE = V_{IH}$	_		5	μΑ
Operating Power Supply Current*1	I_{DD}	$/CE = 0.2 \text{ V}, I_{out} = 0 \text{ mA}$	—	15	20	mA
Standby Current	${ m I}_{ m SB}$	$\label{eq:continuous} \begin{split} /ZZ & \geq V_{DD} - 0.2V \\ /CE, /WE, /OE & \geq V_{DD} - 0.2V \\ /LB, /UB & \geq V_{DD} - 0.2V \\ Others & \geq V_{DD} - 0.2V \text{ or } \leq 0.2V \end{split}$	_	30	150	μΑ
Sleep Current	I_{ZZ}	$\label{eq:ZZ=VSS} \begin{split} /ZZ = V_{SS} \\ /CE, /WE, /OE, /LB, /UB = V_{DD} \\ Others \ge V_{DD} \text{ or } V_{SS} \end{split}$	_	5	20	μΑ
High Level Input Voltage	V_{IH}	$V_{DD} = 1.8 V \text{ to } 3.6 V$	$V_{DD} \times 0.8$		$V_{DD} + 0.3$	V
Low Level Input Voltage	V_{IL}	$V_{DD} = 1.8 V \text{ to } 3.6 V$	- 0.3	_	$V_{DD} \times 0.17$	V
High Level	V_{OH1}	$V_{DD} = 2.7V \text{ to } 3.6V$ $I_{OH} = -1.0\text{mA}$	$V_{DD} \times 0.8$	_	_	V
Output Voltage	V_{OH2}	$V_{DD} = 1.8V \text{ to } 2.7V$ $I_{OH} = -100\mu\text{A}$	$V_{DD}-0.2$	_	_	V
Low Level Output	V_{OL1}	$V_{DD} = 2.7V \text{ to } 3.6V$ $I_{OL} = 2.0\text{mA}$	_		0.4	V
Voltage	$ m V_{OL2}$	$V_{DD} = 1.8V \text{ to } 2.7V$ $I_{OL} = 150 \mu A$	_	_	0.2	v

^{*1:} During the measurement of I_{DD}, all Address and I/O were taken to only change once per active cycle.

Iout: output current

2. AC Characteristics

AC Test Conditions

 $\begin{array}{ll} \mbox{Power Supply Voltage} & : 1.8 \ \mbox{V to } 3.6 \ \mbox{V} \\ \mbox{Operation Ambient Temperature} & : -40 \ \mbox{°C to } +85 \ \mbox{°C} \\ \mbox{Input Voltage Amplitude} & : 0 \ \mbox{V / V}_{DD} \end{array}$

(1) Read Cycle

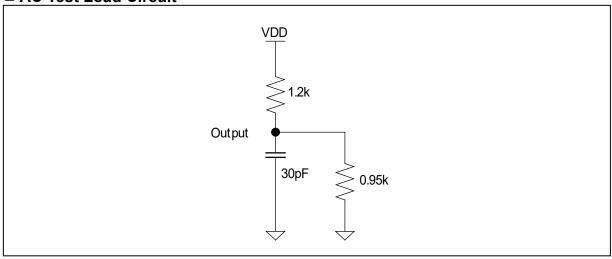
		Va	alue	Valu		
Parameter	Symbol	(V _{DD} =1.8	V to 2.7V)	(V _{DD} =2.7V t	o 3.6V)	Unit
		Min	Max	Min	Max	
Read Cycle time	$t_{ m RC}$	185	_	150	_	ns
/CE Access Time	$t_{\rm CE}$	_	95		75	ns
Address Access Time	t_{AA}		185		150	ns
/CE Output Data Hold time	t_{OH}	0	_	0	_	ns
Address Access Output	t_{OAH}	20	_	20	_	ns
Output Data Hold time						
/CE Active Time	t_{CA}	95	_	75	_	ns
Pre-charge Time	t_{PC}	90	_	75	_	ns
/LB, /UB Access Time	t_{BA}		35		20	ns
Address Setup Time	t_{AS}	0	_	0	_	ns
Address Hold Time	t_{AH}	95	_	75	_	ns
/CE↑ to Address Transition time*1	tcah	0	_	0	_	ns
/OE Access Time	t_{OE}	_	35	_	20	ns
/CE Output Floating Time*1	$t_{\rm HZ}$	_	10	_	10	ns
/OE Output Floating Time	$t_{ m OHZ}$	_	10	_	10	ns
/LB, /UB Output Floating Time	$t_{ m BHZ}$	_	10	_	10	ns
Address Transition Time*1	t_{AX}	_	15	_	15	ns

^{*1:} Same parameters with the Write cycle.

(2) Write Cycle

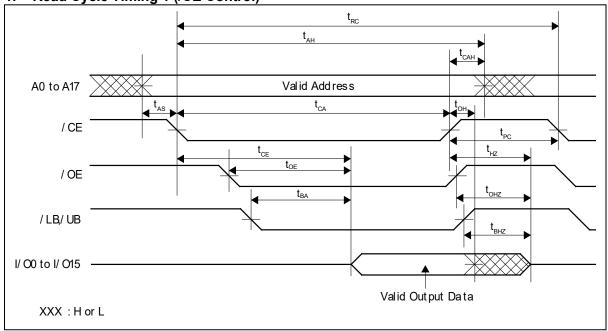
			lue		lue	
Parameter	Symbol	(V _{DD} =1.8)	/ to 2.7V)	$(V_{DD}=2.7)$	√ to 3.6V)	Unit
		Min	Max	Min	Max	
Write Cycle Time	$t_{ m WC}$	185	_	150	_	ns
/CE Active Time	t_{CA}	95	_	75	_	ns
/CE↓ to /WE↑ Time	$t_{\rm CW}$	95	_	75	_	ns
Pre-charge Time	t_{PC}	90	_	75	_	ns
Write Pulse Width	t_{WP}	20	_	20	_	ns
Address Setup Time	t_{AS}	0	_	0	_	ns
Address Hold Time	$t_{ m AH}$	95	_	75	_	ns
/WE↓ to /CE↑ Time	$t_{ m WLC}$	20	_	20	_	ns
Address Transition to /WE↑ Time	$t_{ m AWH}$	185	_	150	_	ns
/WE↑ to Address Transition Time	$t_{ m WHA}$	0	_	0	_	ns
/LB, /UB Setup Time	t_{BS}	2	_	2	_	ns
/LB, /UB Hold Time	$t_{ m BH}$	0	_	0	_	ns
Data Setup Time	t_{DS}	10	_	10	_	ns
Data Hold Time	$t_{ m DH}$	0	_	0	_	ns
/WE Output Floating Time	$t_{ m WZ}$		10		10	ns
/WE Output Access Time*1	t_{WX}	10	_	10	_	ns
Write Setup Time*1	t_{WS}	0	_	0	_	ns
Write Hold Time*1	$t_{ m WH}$	0		0	_	ns

^{*1:} Writing operation applies "Write Cycle Timing 1" or "Write Cycle Timing 2" by the relation of /CE and /WE timing. The values of t_{WX}, t_{WS} and t_{WH} are defined by these operations. The conditions of t_{WS} and t_{WH} are not checked at shipping test.

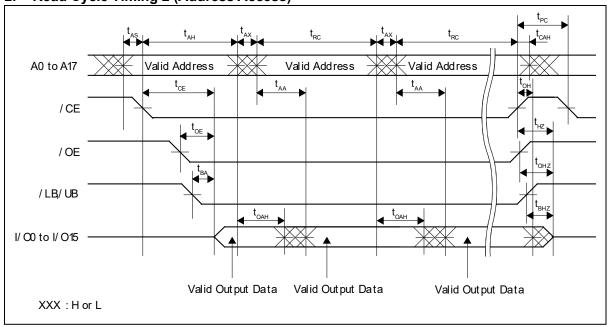

(3) Power ON/OFF Sequence and Sleep Mode Cycle

Darameter	Cumbal	Va	l lmi4	
Parameter	Symbol	Min	Max	Unit
/CE level hold time for Power ON	$t_{ m PU}$	450	_	μs
/CE level hold time for Power OFF	$t_{ m PD}$	85	_	ns
Power supply rising time	$t_{ m VR}$	50	_	μs/V
Power supply falling time	$t_{ m VF}$	100	_	μs/V
/ZZ active time	t_{ZZL}	1	_	μs
Sleep mode enable time	t_{ZZEN}	_	0	μs
/CE level hold time for Sleep mode release	t_{ZZEX}	450	_	μs

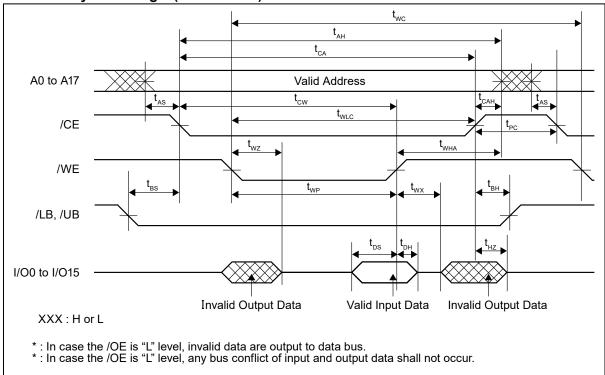
3. Pin Capacitance


Parameter	Symbol Condition		Value			Unit
Faranietei			Min	Тур	Max	Oilit
Input Capacitance	C_{IN}	N - 2 2 N	_		6	pF
Input/Output Capacitance (I/O pin)	$C_{I/O}$	$V_{DD} = 3.3 \text{ V},$ $f = 1 \text{ MHz}, T_A = +25 \text{ °C}$	_		8	pF
/ZZ Pin Input Capacitance	C_{ZZ}	$1-1$ MHz, 1_A-+23 C	_		8	pF

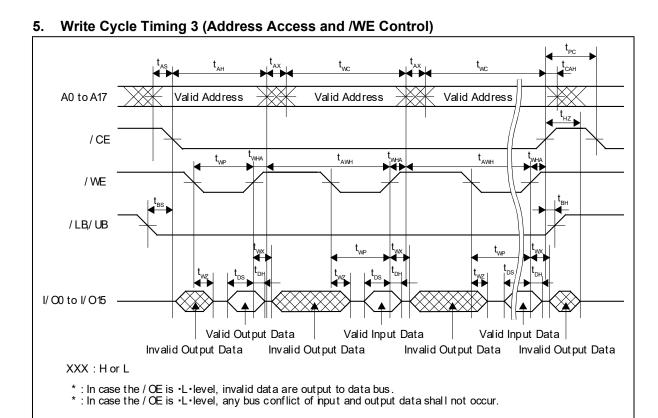
■ AC Test Load Circuit



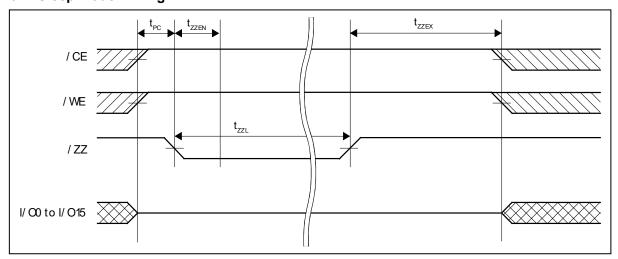
■ TIMING DIAGRAMS


1. Read Cycle Timing 1 (/CE Control)

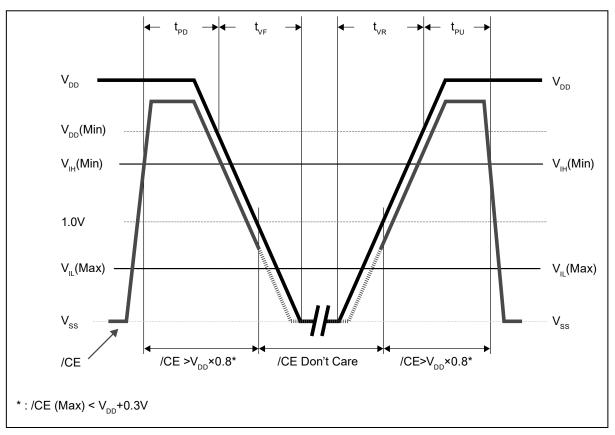
2. Read Cycle Timing 2 (Address Access)



3. Write Cycle Timing 1 (/WE Control)



4. Write Cycle Timing 2 (/CE Control)



6. Sleep Mode Timing

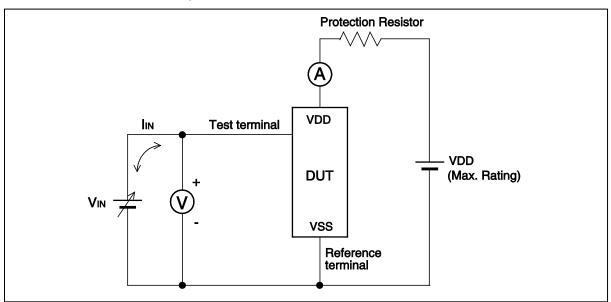
■ POWER ON/OFF SEQUENCE

■ FeRAM CHARACTERISTICS

Item	Min	Max	Unit	Parameter	
Read/Write Endurance*1	10^{13}	_	Times/16 bits	Operation Ambient Temperature $T_A = +85 ^{\circ}\text{C}$	
	10	_		Operation Ambient Temperature $T_A = +85$ °C	
Data Retention*2	Oata Retention*2 95 — Years Operation		Operation Ambient Temperature $T_A = +55$ °C		
	≥ 200			Operation Ambient Temperature $T_A = +35 ^{\circ}\text{C}$	

^{*1:} Total number of reading and writing defines the minimum value of endurance, as an FeRAM memory operates with destructive readout mechanism.

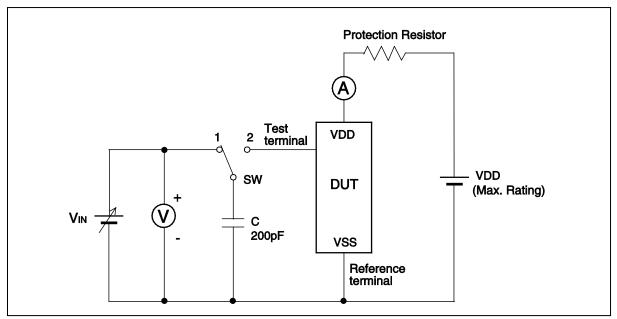
■ NOTE ON USE


• We recommend programming of the device after reflow. Data written before reflow cannot be guaranteed.

^{*2:} Minimum values define retention time of the first reading/writing data right after shipment, and these values are calculated by qualification results.

■ ESD AND LATCH-UP

Test	DUT	Value
ESD HBM (Human Body Model)		≥ 2000 V
JESD22-A114 compliant		≥ 2000 V
ESD MM (Machine Model)		> 200 1/
JESD22-A115 compliant		≥ 200 V
ESD CDM (Charged Device Model)		
JESD22-C101 compliant		_
Latch-Up (I-test)	MB85R4M2TFN-G-JAE2	
JESD78 compliant	MID63R4MZTFN-G-JAEZ	_
Latch-Up (V _{supply} overvoltage test)		
JESD78 compliant		_
Latch-Up (Current Method)		
Proprietary method		_
Latch-Up (C-V Method)		> 200 X/
Proprietary method		≥ 200 V


Current method of Latch-Up Resistance Test

Note: The voltage VIN is increased gradually and the current I_{IN} of 300 mA at maximum shall flow. Confirm the latch up does not occur under I_{IN} = ±300 mA.

In case the specific requirement is specified for I/O and $I_{\rm IN}$ cannot be 300 mA, the voltage shall be increased to the level that meets the specific requirement.

C-V method of Latch-Up Resistance Test

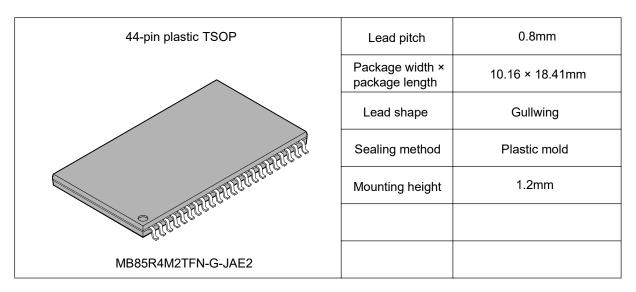
Note: Charge voltage alternately switching 1 and 2 approximately 2 sec intervals. This switching process is considered as one cycle.

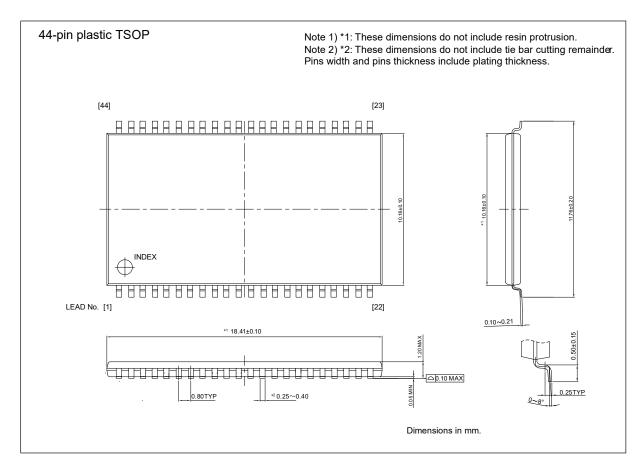
Repeat this process 5 times. However, if the latch-up condition occurs before completing 5 times, this test must be stopped immediately.

■ REFLOW CONDITIONS AND FLOOR LIFE

[JEDEC MSL] : Moisture Sensitivity Level 3 (IPC/JEDEC J-STD-020E)

■ CURRENT STATUS ON CONTAINED RESTRICTED SUBSTANCES

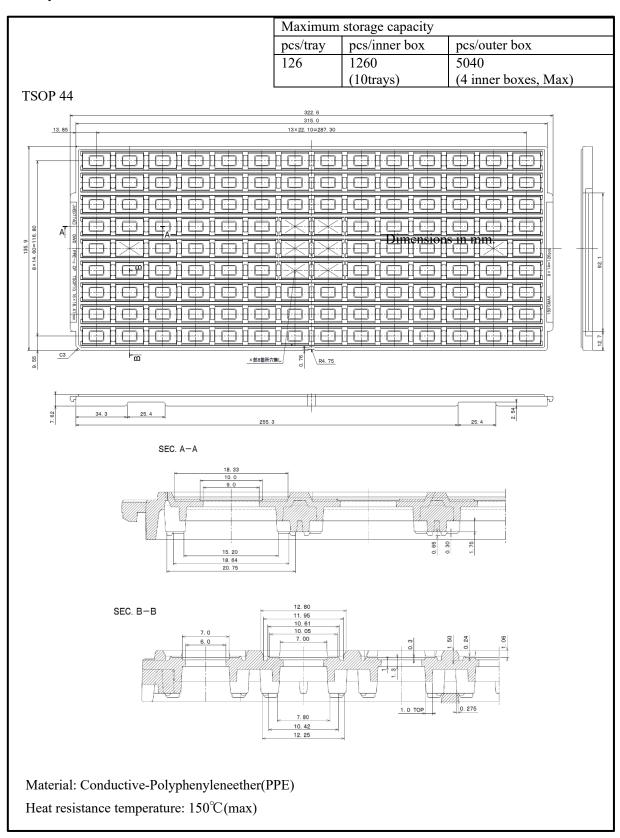

This product complies with the regulations of REACH Regulations, EU RoHS Directive and China RoHS.


■ ORDERING INFORMATION

Part Number	Package	Shipping form	Minimum shipping quantity
MB85R4M2TFN-G-JAE2	44-pin plastic TSOP	Tray	*

^{*:} Please contact our sales office about minimum shipping quantity.

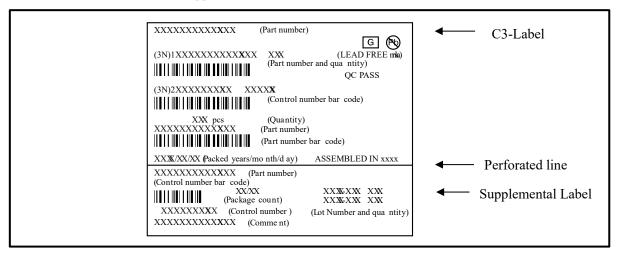
■ PACKAGE DIMENSIONS

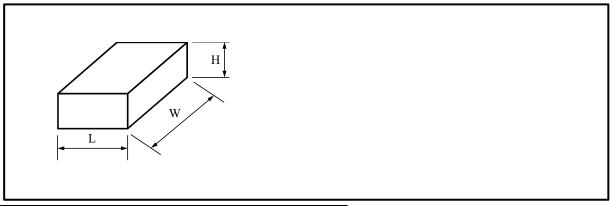


■ MARKING(example)

[MB85R4M2TFN-G-JAE2]		
E E2	MB85R4M2T 1800 800	
E2	MB85R4M2T 1800 800	
[TSOP 44P]		

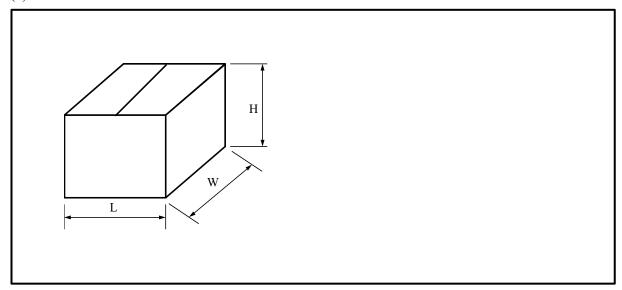
■ PACKING


- 1. Tray
- 1.1 Tray dimensions


Products(IC) Products(IC) IC Index mark Chamfer Tray

1.3 Product label indicators

Label I: Label on Inner box/Moisture Barrier Bag/ (It sticks it on the reel for the emboss taping) [C-3 Label (50mm x 100mm) Supplemental Label (20mm x 100mm)]


- 1.4 Dimensions for container
- (1) Dimensions for inner box

L	W	Н
162	360	90

(Dimensions in mm)

(2) Dimensions for outer box

L	W	Н
410	375	225

(Dimensions in mm)

■ MAJOR CHANGES IN THIS EDITION

A change on a page is indicated by a vertical line drawn on the left side of that page.

Page	Section	Change Results
7	1. DC Characteristics	Adjust the sleep current condition.

RAMXEED LIMITED

Shin-Yokohama Chuo Building, 2-100-45 Shin-Yokohama, Kohoku-ku, Yokohama, Kanagawa 222-0033, Japan https://ramxeed.com/

All Rights Reserved.

RAMXEED LIMITED, its subsidiaries and affiliates (collectively, "RAMXEED") reserves the right to make changes to the information contained in this document without notice. Please contact your RAMXEED sales representatives before order of RAMXEED device.

Information contained in this document, such as descriptions of function and application circuit examples is presented solely for reference to examples of operations and uses of RAMXEED device. RAMXEED disclaims any and all warranties of any kind, whether express or implied, related to such information, including, without limitation, quality, accuracy, performance, proper operation of the device or non-infringement. If you develop equipment or product incorporating the RAMXEED device based on such information, you must assume any responsibility or liability arising out of or in connection with such information or any use thereof. RAMXEED assumes no responsibility or liability for any damages whatsoever arising out of or in connection with such information or any use thereof.

Nothing contained in this document shall be construed as granting or conferring any right under any patents, copyrights, or any other intellectual property rights of RAMXEED or any third party by license or otherwise, express or implied. RAMXEED assumes no responsibility or liability for any infringement of any intellectual property rights or other rights of third parties resulting from or in connection with the information contained herein or use thereof.

The products described in this document are designed, developed and manufactured as contemplated for general use including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high levels of safety is secured, could lead directly to death, personal injury, severe physical damage or other loss (including, without limitation, use in nuclear facility, aircraft flight control system, air traffic control system, mass transport control system, medical life support system and military application), or (2) for use requiring extremely high level of reliability (including, without limitation, submersible repeater and artificial satellite). RAMXEED shall not be liable for you and/or any third party for any claims or damages arising out of or in connection with above-mentioned uses of the products.

Any semiconductor devices fail or malfunction with some probability. You are responsible for providing adequate designs and safeguards against injury, damage or loss from such failures or malfunctions, by incorporating safety design measures into your facility, equipments and products such as redundancy, fire protection, and prevention of overcurrent levels and other abnormal operating conditions.

other abnormal operating conditions.

The products and technical information described in this document are subject to the Foreign Exchange and Foreign Trade Control Law of Japan, and may be subject to export or import laws or regulations in U.S. or other countries. You are responsible for ensuring compliance with such laws and regulations relating to export or re-export of the products and technical information described herein.

All company names, brand names and trademarks herein are property of their respective owners.